435.0015 0515858445665454

485 545 . 5845 5

LEADING INDICATORS OF UNDER POLICY-Relevant and Methodology

Henny Abigailwillyen Sinjus, Heizlyn Amyneina Hamzah, Muhammad Khalid Ahmad Kamal, Mohd Yusof Saari, Muzafar Shah Habibullah and Muhammad Daaniyall Abd Rahman

LEADING INDICATORS OF UNDER PLOY AND A DESCRIPTION OF A D

Henny Abigailwillyen Sinjus, Heizlyn Amyneina Hamzah, Muhammad Khalid Ahmad Kamal, Mohd Yusof Saari, Muzafar Shah Habibullah and Muhammad Daaniyall Abd Rahman

Published by MPH Group Publishing Sdn Bhd Level 1, Block A, Lot 1829, Jalan KPB 3 Kawasan Perindustrian Balakong 43300 Balakong, Selangor, Malaysia *email: mphpublishing@mph.com.my*

for

EIS-UPMCS Centre for Future Labour Market Studies(EU-ERA) Office of Employment Insurance System (EIS) Menara PERKESO Putrajaya Level 2, No.6, Persiaran Perdana Precinct 2, 62100 Putrajaya

Distributed by MPH Distributors Sdn Bhd Level 2, Block A, Lot 1829, Jalan KPB 3 Kawasan Perindustrian Balakong 43300 Balakong, Selangor, Malaysia *email: distributors@mph.com.my*

MPH Distributors (S) Pte Ltd No. 12 Tagore Drive, Habitat Warehouse, Singapore 787621 email: sales@mph.com.sg

Copyright © 2021 Henny Abigailwillyen Sinjus, Heizlyn Amyneina Hamzah, Muhammad Khalid Ahmad Kamal, Mohd Yusof Saari, Muzafar Shah Habibullah, Muhammad Daaniyall Abd Rahman

All rights reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior permission of both the copyright owner and the publisher of this book.

The findings and interpretations expressed in this publication are those of the authors and do not necessary represent those of the Social Security Organisation (SOCSO), including the Office of Employment Insurance System (EIS) or the Government of Malaysia. The boundaries and colours shown on any part in this publication do not imply any judgement on the part of EU-ERA.

The cover images are for illustrative purposes only.

Perpustakaan Negara Malaysia Cataloguing-in-Publication Data

Henny Abigailwillyen Sinjus

LÉADING INDICATORS OF UNEMPLOYMENT RATE: Policy-Relevant and Methodology / Written By Henny Abigailwillyen Sinjus, Heizlyn Amyneina Hamzah, Muhammad Khalid Ahmad Kamal, Mohd Yusof Saari, Muzafar Shah Habibullah, Muhammad Daaniyall Abd Rahman. ISBN 978-967-2923-16-9

1. Economic indicators—Malaysia. 2. Labor market—Malaysia.

3. Unemployment—Malaysia. 4. Manpower policy—Malaysia.

I. Heizlyn Amyneina Hamzah. II. Muhammad Khalid Ahmad Kamal.

III. Mohd. Yusof Saari. IV. Muhammad Daaniyall Abd. Rahman.

V. Muzafar Shah Habibullah. VI. Title.

331.109595

For general information on our other products and services, please contact EU-ERA within the Malaysia at +603-80915465 or euera.centre@gmail.com.

FOREWORD

YBhg. Dato' Sri Dr Mohammed Azman bin Dato' Aziz Mohammed Chief Executive Social Security Organisation (SOCSO), Malaysia

Managing (un)employment during a large-scale pandemic that we are facing today is very challenging due to the rapid change in the number of jobs and the unemployed, subject to the movement control restrictions to curb the transmission of COVID-19. The dynamic movement of the unemployment rate makes it hard for

labour market conditions to be managed during the crisis and postcrisis. This calls for the labour market leading indicator (LMLI) approach to anticipate the unemployment rate and provide early signals of labour market conditions. An outlook of the unemployment situation is an essential tool for labour market monitoring in Malaysia.

The COVID-19 pandemic has triggered a labour market crisis, leading to thousands of job losses. A slow recovery of the labour market will disrupt the nation's development and increase economic losses. Therefore, there is an urgent need to adopt the labour market policy monitoring for the country to weather the impact of the crisis on the labour market. This book is an excellent initiative by EU-ERA, addressing the importance of having accurate, relevant, timely and accessible indicators, which are essential for labour market policy monitoring and evaluation.

ABOUT THE AUTHORS

HENNY ABIGAILWILLYEN SINJUS

Henny is currently pursuing a Master of Science degree in Economics at Universiti Putra Malaysia. She works at EU-ERA as a Junior Economist and is particularly interested in quantitative forecasting techniques, big data analytics (BDA), and systems applications for labour policy analyses assessment and forecasting.

HEIZLYN AMYNEINA HAMZAH

Heizlyn is currently pursuing a Master of Science degree in Economics at Universiti Putra Malaysia. Being a Junior Economist at EU-ERA, her studies are focusing on area related skills to taxonomy, which involves the issues of mismatches in the labour market.

MUHAMMAD KHALID AHMAD KAMAL

Khalid is a PhD candidate at the School of Business and Economics, Universiti Putra Malaysia. With the specialisation in Econometric modelling, his research primarily revolves around partial equilibrium analysis. As Junior Economist at EU-ERA, Khalid employs his specialisation in modelling and forecasting of the labour market information.

MOHD YUSOF SAARI

Yusof is an Associate Professor at the School of Business and Economics, Universiti Putra Malaysia. In August 2020, he was seconded to the Office of Employment Insurance System (EIS) under the Social Security Organisation (SOCSO) as Chief Economist. Yusof holds a PhD in Economics from the University of Groningen, and has written extensively and has written extensively on the issues of development economics, with specific applications of input-output, social accounting matrix (SAM). Yusof is also a prominent speaker and writer in the Malaysian news and printed media.

MUZAFAR SHAH HABIBULLAH

Muzafar is a Professor at Putra Business School, Malaysia. He holds a PhD in Economics from the University of Southampton, United Kingdom, and is a Senior Economist at EU-ERA. His area of specialisation includes applied macroeconomics, monetary economics, and

banking. Throughout his career, he has published more than 350 journal articles, eight books, seven edited books, 61 chapters in books, and 118 chapters in proceedings.

MUHAMMAD DAANIYALL ABD RAHMAN

Daaniyall is a Senior Lecturer at the School of Business and Economics, Universiti Putra Malaysia. He holds a PhD from the Centre for Integrated Sustainability Analysis, University of Sydney, Australia. Being a Senior Economist at EU-ERA, his professional career rested largely on teaching and research work in development economics, international trades, global value chains, and sustainability analysis. Apart from academic journals, Daaniyall has also contributed his works for a broader public audience published in the printed media.

ACKNOWLEDGEMENTS

We are grateful to several individuals and organisations for their help and encouragement. Above all, we would like to express our deepest gratitude to the Social Security Organisation (SOCSO) for their proactive initiative in funding this project and the operation of EU-ERA.

We want to express our thanks to our colleagues from the Office of Employment Insurance System, particularly the Division of Employment Information Analysis Services, for generously giving their support for providing labour market information (LMI) database, advice, and their time to review the analyses provided in this the analyses provided in this book.

Several core agencies have contributed to the completion of this book. We are grateful for the advice and encouragement provided by the International Labour Organization (ILO), and all the government and private agencies in Malaysia. The advice and feedback from Roger Gomis, representative of the ILO, is deeply appreciated. We are incredibly grateful to the representatives from Bank Negara Malaysia (BNM), Economic Planning Unit (EPU), Ministry of Human Resources (MOHR), International Centre for Education in Islamic Finance (INCEIF), Institute of Labour Market Information and Analysis (ILMIA), Malaysian Industrial Development Finance Berhad (MIDF), Malaysian Institute of Economic Research (MIER), Permodalan Nasional Berhad (PNB), and Ministry of Finance (MOF) for their invaluable insights and helpful information.

We must also acknowledge the statistics providers, whose published data contributed to the completion of this research. All the data used in this research are published by SOCSO, the Department of Statistics Malaysia (DOSM) and BNM.

Many thanks to our colleagues at EU-ERA for their consistent support in providing direct and indirect contributions from the beginning, in the completion of this book. We are all sailors in one ship heading for the same destination.

Finally, we would like to extend our sincere thanks to our family and friends for their unceasing support and encouragement throughout the writing of this book.

CONTENTS

Foreword	iii
About the Authors	iv
Acknowledgements	vi
Tables, Figures, Screenshots, Appendices, and Boxes	x
About This Book	xiii
Plan of the Book	XU
CHP 1 Introduction	1
What is a Leading Indicator?	1
Leading, Lagging and Coincident Indicators	1
Leading Indicators as an Early Warning System	2
Why are Labour Market Leading Indicators Crucial?	4
Labour Market Monitoring System	4
Key Indicators of Labour Market (KILM) vs. Labour Market	
Leading Indicators (LMLI)	6
Leading Indicators of Unemployment	7
Leading Indicator Candidates	7
Key Findings	9
Policy Implications	9
Leading Indicators of Loss of Employment	10
Benchmarking	11
Development of Leading Indicators for the Unemployment Rate	12
Utilisation of Leading Indicators in Forecasting the	
Unemployment Rate	13
What's Next?	13
Reterences	14
CHP 2 Data Selection	16
Introduction	16
Leading and Lagging Indicator: What is the Difference?	16
Data Selection Process	17
Choice of Target Variables	18
Choice of Leading Indicator Candidates	18
Criteria	18
Review of Literature	20
Brainstorming Ideas	20
Outcome: List of Target and Leading Indicator Candidates	21
References	22
Appendix	22
CHP 3 Data Filtering	25
Introduction	25
Preparing the Data	25
* U	

Seasonal Adjustment	25
Calendar Variations	27
Deterministic and Stochastic Seasonality	27
Seasonal Adjustment Method	28
TRAMO/SEATS Method	29
TRAMO Program	30
SEATS Program	31
TRAMO/SEATS in EViews	32
TRAMO/SEATS vs X-12 ARIMA	34
Outlier Detection	35
Types of Outlier	35
De-trending and Smoothing	36
Hodrick-Prescott Filter	36
Normalisation	36
Getting Started with EViews	37
Import Data Files	37
Save Data Files	37
Open Several Data as a Group	38
Save Several Data as a File	39
Freeze the Result	40
Guidelines with EViews Snapshot	42
Outcome: List of Filtered Data	48
Reterences	49
CHP 4 Data Evaluation	50
Introduction	50
Lead or Lag Indicator?	50
Cross-correlation Structure	50
Correlation Coefficient	52
Correlation Coefficient in EViews	52
Causality	54
Granger Causality	55
Guidelines with EViews Snapshot	55
Outcome: The Final Leading Indicators	62
References	64
Appendix	64
CHP 5 Measuring Forecast Performance	70
Introduction	70
Forecast with Leading Indicators	70
Forecasting Process	70
Finding a Post Fit Foregoet	71
Princing a Dest-Fit Polecast	/2 27
Regression Method for Predictions	72
Ordinary Least Squares (OLS)	/3
Forecast Accuracy	74
Koot Mean Square Error (KMSE)	74
Wean Absolute Error (MAE)	75
Their's Inequality Coefficient (Theil)	75

Forecast Sensitivity Performance	75
Rolling Regression	75
Recursive Regression	76
Guidelines with EViews Snapshot	76
Outcome: Unemployment Rate Forecast Performance with Leading Indicators	87
References	90
CHP 6 Loss of Employment Forecast	91
Introduction	91
Seasonal Adjustment	91
STL Decomposition Method	92
The Inner Loop	92
The Outer Loop	94
LOESS Estimation	94
STL Decomposition in EViews	96
Guidelines with EViews Snapshot	96
Outcome: Loss of Employment (LOE) Forecast Performance with	
Leading Indicators	99
References	101
Index	102

TABLES, FIGURES, SCREENSHOTS, APPENDICES, AND BOXES

Tables

1.1 Indications of leading, lagging and coincident indicators	2
1.2 List of variables and indicators	8
2.1 Target variables and candidates for leading indicators	21
4.1 Pairwise correlation between the unemployment rate and candidate leading indicators	62
4.2 Granger causality between the unemployment rate and candidate leading indicators	63
5.1 Rolling forecasting model	89
5.2 Recursive forecasting model	90

Figures

A Journey of this book	XU
1.1 Chronology of Movement Control Order (MCO) and unemployment rate	
in Malaysia, 2020	5
1.2 Hypothetical comparison of leading indicators and lagging indicator	5
1.3 Forecast performance of composite leading index (CLI) for unemployment rate	9
1.4 Prior research on leading indicators for the unemployment rate	12
2.1 Characteristics of leading and lagging indicators	17
2.2 Data selection processes	18
2.3 Economic criteria in selecting a leading variable	19
2.4 Statistical criteria in selecting a leading variable	20
3.1 TRAMO/SEATS dialog options	32
3.2 Comparison of TRAMO/SEATS and X-12 ARIMA methods	34
3.3 Importing data files from Excel into EViews	37
3.4 Saving a dataset as a work file in EViews	38
3.5a Open several data as a group in EViews	38
3.5b Several data opened as a group	39
3.6a Saving several data as a file in EViews	39
3.6b Several data saved as a file	40
3.7a The correlation result between two variables	40
3.7b Freezing the result in EViews	41
3.7c The frozen result saved as a new file	41
3.8 Plots of raw and filtered variables	48
4.1 Covariance Analysis dialog options	52
5.1 Forecasting process	71
5.2 Characteristics of a best-fit forecast	72
5.3 Classical linear regression model (CLRM) assumptions	73
5.4 Composite leading index (CLI) forecasting model	88
5.5 Benchmark forecasting model	88
5.6 Out-of-sample forecasting performance for unemployment rate (UR)	89
6.1 STL Decomposition dialog options	95
6.2 Composite leading index (CLI) forecasting model	99

6.3 Benchmark forecasting model	100
6.4 Out-of-sample forecasting performance for loss of employment (LOE)	100

Screenshots

3.1a Selecting the TRAMO/SEATS method	42
3.1b Fill in the dialog options for the TRAMO/SEATS tab	43
3.1c Fill in the dialog options for the Regressors tab	43
3.2a Fill in the dialog options for the Outliers tab	44
3.2b TRAMO/SEATS result	44
3.3a Selecting the Hodrick-Prescott method	45
3.3b Fill in the dialog options (Hodrick-Prescott method)	46
3.3c Hodrick-Prescott result	46
3.4 Computing the Gyomai-Guidetti normalisation in the command line	47
4.1a Selecting cross-correlation analysis	56
4.1b Determining lags to include	57
4.1c Cross-correlation result	57
4.2a Selecting covariance analysis	58
4.2b Fill in the dialog options (covariance analysis)	59
4.2c Correlation coefficient result	59
4.3a Fill in lag intervals into optimal lags	60
4.3b Selecting Granger Causality analysis	61
4.3c Granger causality result	61
5.1 Aggregating the leading indicators into a CLI	77
5.2a Opening the series as an equation	78
5.2b Fill in the dialog options for the Specification tab	78
5.2c Fill in the dialog options for the Options tab	79
5.2d OLS regression result	79
5.3a Selecting the forecast function	80
5.3b Fill in the dialog options	80
5.3c Forecasting result	81
5.4a Fill in the dialog options for the Specification tab	82
5.4b Selecting the forecast function	83
5.4c Fill in the dialog options	83
5.4d Forecasting result	84
5.5a Fill in the dialog options for the Specification tab	85
5.5b OLS regression result	85
5.5c Fill in the forecast dialog options	86
5.5d Forecasting result	86
6.1a Selecting the STL decomposition method	97
6.1b Fill in the dialog options	98
6.1c STL decomposition result	98

Appendices

2.1 List of leading indicators for unemployment rate from literature review	22
4.1 Unit Root Test	64
4.1a Selecting unit root test	65
4.1b Fill in the dialog options (unit root test)	65

4.1c Unit root test result	66
4.2 Finding Optimal Lag	66
4.2a Opening the series as VAR	67
4.2b Fill in the dialog options (VAR specification)	68
4.2c Selecting Lag Length Criteria function	68
4.2d Determining lags to include	69
4.2e Choose the optimal lags	69
Boxes	

3.1 Four main components of a time series	26
3.2 Deterministic vs stochastic	28
4.1 Five potential results of correlation	51
4.2 What is causality?	54
5.1 Meet the Gauss-Markov theorem	74

ABOUT THIS BOOK

This book is the product of EIS-UPMCS Centre for Future Labour Market Studies (EU-ERA), on Monitoring and Evaluation Programme research with specific application to the labour leading market indicators. One of the field's research goals is to observe a set of leading indicators that offer analysts with an early warning system for short-term changes in unemployment rates in Malaysia.

The "leading indicators" technique for tracking or forecasting the direction of changes in economic activities rely on the signals from other variables, whose turning points have historically always preceded the economic cycle's turning points. Thus, it is based on the signals of variables that have empirically "driven" the economic cycle, such as output, sales, investment, inflation, and money supply. By adding labour market factors to the "leading" indicators of economic activity, the approach has been expanded to predict changes in the employment cycle.

It is commonly acknowledged that using leading indicators for short-term forecasting is not intended to be, and cannot be, a substitute for forecasting models. It is, however, widely acknowledged as a useful, convenient, and quick tool for optimising the information provided by a set of data, with applications for "forecasting" purposes, such as anticipating the direction of change of the economic cycle; the employment cycle in our case; but without providing a precise quantification of the changes. When analysing and judging the technique's prospective use, it is crucial to keep in mind the clear distinction between it and typical forecasting models.

This book addresses the importance of having accurate, relevant, timely and accessible indicators, which are essential for labour market policy monitoring and evaluation. Managing an economic crisis during the recovery periods from the COVID-19 pandemic is challenging, because economic and labour market variables associated with a high degree of fluctuation are influenced by non-pharmaceutical measures of movement control order restrictions and stimulus packages. Non-pandemic crises, such as financial and commodity crises, also lead to fluctuations. This contrasts with the normal periods in which the economic and labour market variables are stabilised.

This book also complements the readers with a guided methodology for the development of leading indicators. It offers a guided learning on how to develop leading indicators through applications of EViews (version 10) screenshots. This will help readers to learn applications of EViews independently and develop skills for empirical research. Uniquely, the methodology developed and documented in this book can be expanded and applied for other targeted variables with different sets of leading indicators. In a simple analogy, we have provided the vehicle for the drivers and passengers, and now it depends on where they want to go.

This is just the beginning of a long journey in labour market leading indicator research in Malaysia. More efforts addressing the extension and expansion of labour market leading indicators will be performed and published in the future.

PLAN OF THE BOOK

This book is structured into six chapters. Along the journey, readers can observe the position of each chapter by referring to Figure A. For the policymakers and non-technical readers, reading Chapter 1 provides enough information on the concept and policy relevant for the labour market leading indicators, with specific applications to unemployment rates.

Figure A: Journey of this book

Chapters 2 to 6 provide a roadmap for readers who are interested in learning methods for the development of leading indicators. These chapters are highly relevant for postgraduate students, researchers, and academicians. The chapters can also be grouped into two parts: data processing procedures (Chapters 2 to 4) and forecast performance (Chapters 5 to 6).

Data Processing Procedures

Chapter 2 deals with the data selection procedures. Before beginning to develop leading indicators, readers need to know what the target variable is. Then, list all of the possible leading indicators for the target variable through reviewing literature and brainstorming on "what might be the factors?" The first step is a logic check, and the second is a gut check. Both are complementary steps for searching leading indicators and ensuring that they are relevant for the target variable.

Chapter 3 explains a series of processes in filtering the candidate series. Filtering the data series is needed as a pre-step for producing a relevant leading indicator. It is to remove other components, such as seasonal components, outliers, and trends that may obstruct the true underlying cyclical patterns in the candidate series. Given that the leading indicators are expressed in different units and scales, the series will be normalised to some common denominator.

Chapter 4 provides a short analysis to evaluate the conformity of leading indicator candidates to a target variable. Evaluating the indicators is the last stage of the leading indicator development process. It is to choose suitable leading indicators through two analyses, pairwise correlation and causality. The indicators will be chosen only if they lead, have a higher correlation, and Granger-cause the target variable.

Forecast Performance

Chapter 5 evaluates the forecast performance with a specific application to the unemployment rates. Once the leading indicators have been finalised in Chapter 4, Chapter 5 explains how the forecast accuracy and sensitivity is measured. This step is crucial in facilitating the decision-making process and developing strategies to support and mitigate an upcoming impact.

Chapter 6 repeats methodologies in Chapters 2 to 5 with specific application to the loss of employment as the target variable. The loss of employment data is captured and monitored daily by the Office of Employment Insurance System (EIS), under the Social Security Organisation (SOCSO), and is one of the crucial lagging labour market indicators. In assessing loss of employment forecast performance, this study undertakes different seasonal adjustment techniques.